

BESOS documentation

besos: Building and Energy Systems Optimization and Surrogate-modelling

besos library and BESOS platform have been created by the Energy In Cities Group and University of Victoria. The Platform is a Jupyter Hub that is able to run the besos code base, and has all the dependencies installed. The platform is freely accessible for academics in the building energy modelling space.

[image: _images/besos.png]
Besos library connects modelling and optimization tools to allow for parameterizing
running and optimizing models, sampling from their design spaces, and generating data for use
in machine learning models. This supports designing building and district energy modelling experiments.

[image: _images/pipeline.svg]
 [https://gitlab.com/energyincities/besos/-/commits/master][image: _images/coverage.svg]
 [https://gitlab.com/energyincities/besos/][image: _images/code%2520style-black-000000.svg]
 [https://github.com/psf/black][image: _images/pre--commit-enabled-brightgreen.svg]
 [https://github.com/pre-commit/pre-commit]Examples of applications of Besos to building and district energy modelling are available on our examples overview page or take a look at the example workflow.

EnergyPlus [https://energyplus.net/] is a commonly used physics-based building energy modelling software. EnergyHub [https://python-ehub.readthedocs.io] is a linear programming framework with constraints specificially designed to size energy convertors and schedule energy carriers for an energy system with the intend to minimize cost, emissions or a custom objective funcation. Both these simulation tools are commenly used by civil engineering researchers to build energy related simulation experiments. besos adds substantial functionality to these tools integrating them with python and several different libraries to optimize the model, or use the results from the models for and machine learning.

besos also facilitates running large-scale parametric analyses of EnergyPlus [https://energyplus.net/] or EnergyHub [https://python-ehub.readthedocs.io] models with output in a pandas DataFrame and uses this to train machine learning surrogate models with scikit-learn or TensorFlow. We provide access to commonly used optimization algorithms via existing optimization toolboxes.

besos library and associated BESOS Platform

The BESOS Platform [https://besos.uvic.ca/] is a Jupyter Hub that is able to run the besos code base, and has all the dependencies installed. An overview of the platform using a C4 diagram is presented here. The platform is freely accesible for academics in the building energy modelling space. If you want to get started on the BESOS platform, check out how to get started here! [https://gitlab.com/energyincities/besos/-/blob/master/docs/Getting%20Started%20on%20BESOS%20and%20making%20%20your%20first%20Notebook.pdf]

The besos library [https://gitlab.com/energyincities/besos] connects modelling and optimization tools to allow for parameterizing running and optimizing models, sampling from their design spaces, and generating data for use in machine learning models. This supports designing building and district energy modelling experiments.

Installation

If you want to run besos on your own personal computer, please review the Installation page on the gitlab. If you are an scholar associated with an academic institution you can request access to the BESOS platform through our online request form [https://docs.google.com/forms/d/e/1FAIpQLSfqDFE0Zd0L7VREVJyF4XXvR2iWIaUxjPFuIyY6qXK-wvIoww/viewform]. This platform comes with all the software dependies installed and has significant computational resources avilable.

A high level overview of the besos modules.

The besos library software is written to include all the features required to setup a building or district design energy modelling experiments using EnergyPlus as building energy model and EnergyHub as distric energy model. We have created distinct software objects that will help the designer create this experiment.

The following concepts: Parameters, Objectives, Problem, Evaluators, Sampling and Optimizers have been created to build these experiments. First is the creation of the optimization problem which is composed of a model, parameters and an objective. The model could be an EnergyPlus [https://energyplus.net] model or a PyEHub [https://python-ehub.readthedocs.io] model. Parameters are created is a separate class where each parameter is composed of a selector and a descriptor. The selectors point to the definitions in the model that will be changed and the descriptors provide the range or list of values that are of interest. The objectives point to model results that are of interest to the optimizer. Once a problem has been defined we can make use of the Evaluators to run the model to find a sampled dataset or allow a optimizer to find the best solution given the problem definition. The sampling dataset can be used to train a surrogate model. To get a better understanding how all the concepts work together, we have constructed an example-notebooks/building_to_surrogate_tf that explains these basic concepts.

Examples

The example workflow only gives a high level overview of what is possible. We have prepared more detailed examples of all the various modules and case studies of the besos library. The examples can be found on our examples overview page

Indices and tables

	Index

	Module Index

	Search Page

Acknowledgement

besos library and BESOS platform have been created by the Energy In Cities Group and University of Victoria.

Installing BESOS

Ensure that you have Python 3.7+ and the corresponding version of pip.

Use pip install besos[complete] to install all the dependencies and examples.

Tip

If you do not want to run the example notebooks, you can use pip install besos, which will install with less dependencies.

Install Dependencies

We use third party software to run building models (EnergyPlus), to solve EnergyHub models (a MILP solver), and make use of Rbfopt (via Bonmin). To use this functionality you need to install the software for the corresponding the task. GLPK and Bonmin are optional, it is possible to use Besos without them.

Install Energyplus

Download EnergyPlus here [https://energyplus.net/downloads]. (BESOS is currently supporting versions from 8.8-9.3+).

For windows: After downloading the installation file, double click the setup file to start installing. After setup is complete, navigate to your System Properties and in the Advanced tab, select Environment Variables. In either your User Variables or System Variables (Depending on your permissions), double click on Path and add the location of your EnergyPlus folder to the end of it.

For linux: Run the downloaded script, and accept the prompt to add symlinks.

TensorFlow (only required to use TensorFlow)

TensorFlow is a machine learning library of which we have provided some examples. This package is quite large 300 mb therefore we have not added this to the requirements.

To install TensorFlow use pip install.

pip install tensorflow

MILP solver (only required to use EnergyHub)

EnergyHub [https://gitlab.com/energyincities/python-ehub] modelling requires a linear programming solver that is supported by PuLP [https://pypi.org/project/PuLP/], such as GLPK, CPlex, or Gurobi.

GLPK is free and open source. It can be found here [https://www.gnu.org/software/glpk/].
If you are using a Debian based operating system, you can install GLPK with sudo apt install glpk-utils

Bonmin (only required to use RBFopt)

Bonmin is required to use the RBFopt optimizer.
How to install Bonmin can be found here [https://ampl.com/products/solvers/open-source/#bonmin].

API Reference

Modules

config defines various constants and defaults used in the other files.

eppy_funcs contains miscellaneous functions used to interact with the eppy package.
- Initialises idf objects
- Window adjustment helper functions
- Variable name conversions

errors contains custom errors that Besos can throw.

evaluator contains tools that convert parameters and their values into measurements of the properties of the building they represent.

objectives defines the classes used to measure the building simulation and to generate output values.

optimizer provides wrappers for the platypus and rbf_opt optimisation packages
- Performs the conversion between our Problem type and platypus’ Problem type automatically.
- Converts Pandas DataFrames to populations of platypus Solutions
- Supports NSGAII, EpsMOEA, GDE3, SPEA2 and and other algorithms
- Supports rbf_opt

parameters contains different classes used to represent the attributes of the building that can be varied, such as the thickness of the insulation, or the window to wall ratio. These parameters are separate from the value that they take on during any evaluation of the model.

problem defines classes used to bundle the parameters, objectives and constraints, and to manage operations that involve all of them at once, such as converting data related to the problem to a DataFrame.

pyehub_funcs provides helper functions for interacting with PyEHub.

sampling includes functions used in selecting values for parameters in order to have good coverage of the solution space.

besostypes consists of type definitions used for Besos’ type hints.

besos_utils consists of helper functions to be used throughout codebase

Supporting Files

In most cases, these files will not need to be imported by users.

dask_utils contains dask related helper functions.

errors defines error classes used by this module.

IDF_class Enables some geomeppy based functionality on idf objects.

IO_Objects defines some abstract superclasses that are used for the objects
that handle input and output of evaluators (Parameters/Objectives/Descriptors/etc).

Customizing EnergyHub Solver

Currently we support calling GLPK [https://www.gnu.org/software/glpk/], CPlex [https://www.ibm.com/analytics/cplex-optimizer] and Gurobi [https://www.gurobi.com/] solvers. GLPK is freely available through our platform however if you have a licence to use CPlex or Gurobi you can configre those using the following methods.

You can set the linear solver for the EnergyHub by setting the solver_settings. GLPK is the default solver therefore, if you can call glpsol from the terminal you don’t need to setup anything and it will call the GLPK solver.

For example:

from pyehub.energy_hub.ehub_model import EHubModel
from pyehub.energy_hub.utils import constraint
from pyehub.outputter import pretty_print
excel_file = './examples/EnergyHub/test_file.xlsx' # name of the excel file.
my_model = EHubModel(excel=excel_file) # instantiate our model. Nothing is solved at this point.
results = my_model.solve(solver_settings=solver_settings) # set your solver_settings
pretty_print(results) # print the results to the console

You can configure GLPK with different options or a different path using the following example.

solver_settings={
 'name': 'glpk',
 'solver_path':'glpsol',
 'options': ['--mipgap', '0.05'],
 }

To set Gurobi use:

solver_settings={
 'name': 'gurobi',
 'options':None,
 }

To set CPlex use:

solver_settings={'name': 'cplex',}

Tip

solver_path and options will work for cplex and gurobi based on the command line documentation which can be found here [https://www.gurobi.com/documentation/9.0/refman/grb_command_line_tool.html] for Gurobi and here [https://www.ibm.com/support/knowledgecenter/SSSA5P_12.10.0/ilog.odms.ide.help/OPL_Studio/refoplrun/topics/oplrun_syntax_commandline.html] for CPlex.

Contribute to the code

Code contributions

If you are making a new feature, first install besos locally, and make a feature branch off of dev. (If you are fixing a bug branch off of the master branch.) Once you have written your code, test and format it, then submit a merge request. These steps are described in more detail below.

Development Installation

You will need python 3 and git installed in order to install besos.

Download the repo:

git clone https://gitlab.com/energyincities/besos.git
cd besos
git checkout dev

Set up a virtual environment (optional but recommended):

python3 -m venv venv
source venv/bin/activate

Install besos in editable mode, with development dependencies:

pip install -e .
pip install -r environments/requirements-dev.txt
pre-commit install

Feature branches

To create an feature branch from dev, use

git checkout dev
git pull
git checkout -b <your-branch-name>

Testing and Formatting

You can run the tests using pytest, and format code using black . (both from the besos root directory.) Tests and formatting will also be run automatically by gitlab-ci on any merge request. Every month the master branch also runs all example notebooks.

Design Notes

The primary purpose of these tools is to facilitate combining building simulation tools, machine learning techniques, and optimisation algorithms. It does not attempt to provide new tools in any of these domains.

Two dimensional data should be stored in or converted to a DataFrame where possible, especially for user facing data.

Reasonable defaults should be available where possible.

There should be simple versions of core features available which can be used out of the box.

Provenance

BESOS releases will be authorized by Paul Kovacs (pkovacs@uvic.ca) along with the help of Ralph Evins (revins@uvic.ca) and Theo Christiaanse (theochri@uvic.ca) who will validate the scientific content.

New additions and features to the code base must pass all current tests in the CI pipeline. In addition to passing current tests, extended functionality must come packaged with tests to validate the extension for future releases. If you have a contribution you would like to make, submit a merge request along with a description of the extended functionality and its intended use. From there the BESOS team will evaluate and validate the code for future releases.

With each major release iteration (x.x.0 or higher), additional functions and classes will be documented in our readthedocs pages and a general overview of the changes can be found in the changelog/release notes.

The BESOS platform intends to keep up with upgrades and patches of the third-party software implemented within the platform. Upgrades and patches will be implemented on a necessity basis (i.e. known issues and/or features requests could be implemented before non-critical third-party upgrades/patches are applied).

FAQ Library

If you have more questions please post them on the gitlab issues [https://gitlab.com/energyincities/besos/-/issues] board.

BESOS library (the Python functions for modelling)

	How do I determine the name of the EnergyPlus parameter that I want to modify?

Since there is a lot of variation in .idf files, you have to inspect the file and find the line(s) to modify.

The Selectors notebook in the Evaluators folder has lots of examples of these.

	How do I manipulate my EnergyPlus model programatically?

BESOS building objects are actually EPPy building objects, so you can do things like:
`[materials.Name for materials in building.idfobjects["MATERIAL"]]`

Eppy’s documentation [https://eppy.readthedocs.io/en/latest/] describes how to explore and modify the IDF object directly.

	Why am I getting errors when using a custom FilterSelector?

Make sure you match the syntax in your filter function to the building file type. If you are using an .idf file, convert it to an .epJSON file or use the idf-object syntax.

	How do I convert an .idf file to an .epJSON file?

In the command line, run ‘energyplus -c’ with your .idf file. There will be an .epJSON file in the output directory. Note that this will only work with EnergyPlus9.1 and above. Make sure to have the version of your .idf file up-to-date as well. Use the EnergyPlus IDF Version Updater if necessary. After installation of EnergyPlus locally, it can be found in EnergyPlusVx-x-x/PreProcess/IDFVersionUpdater.

Example Work Flow

Warning

To run this example you will need to install TensorFlow which is >300mb library. To install run pip install tensorflow

Note

Lots of other great surrogate modelling examples can be found here [https://gitlab.com/energyincities/besos-examples/-/blob/master/besos/examples/SurrogateModelling/Overview.ipynb] that make use of scikit learn instead of TensorFlow.

In this notebook we will go over a ensemble model made possible by the besos software.
We will create a surrogate model of a parameterized EnergyPlus building model. The model is
changed based on a given window to wall ratio and solar gain coefficient. These
variables will change the daily electricity use of the buildings. We will create a dataset
of different buildings that will contain the variations of parameters and a time series
of daily electricity use. Using this dataset we will train a neural network to
quickly find those daily electricity values without the need to rerun the EnergyPlus model.
Finally we will use this surrogate model to explore the impact of the variables using
a parallel coordinates plot. To complete this we will walk through nine steps as seen
in the figure below.

[image: Image Figure 1: In this figure we have presented the general pipeline that we will use.]

First we will import all the different libraries we need.

#!pip install besos --user
%matplotlib inline

import pandas as pd
import numpy as np
import tensorflow as tf
import tensorflow.keras as keras
from tensorflow.keras import layers
from besos import eppy_funcs as ef
import besos.sampling as sampling
from besos.problem import EPProblem
from besos.evaluator import EvaluatorEP
from besos.parameters import wwr, RangeParameter,FieldSelector, Parameter
import tensorflow_docs as tfdocs
import tensorflow_docs.plots
import tensorflow_docs.modeling
import time
from dask.distributed import Client

Use seaborn for pairplot
#!pip install --upgrade tensorflow --user

Use some functions from tensorflow_docs
#!pip install git+https://github.com/tensorflow/docs --user

(1) Set up the building from idf

The building is defined by the Information Data File (IDF) or using the
new EnergyPlus format (epJSON).

Open the IDF file
building = ef.get_building("./examples/EnsembleWorkflows/Medium_Office.idf")
building.view_model()

[image: _images/output_5_0.png]
#You can convert an idf to epJSON using the following code.
!energyplus -c "/examples/EnsembleWorkflows/Medium_Office.idf"

(2) Evaluator

Set up the inputs and outputs of your exploration

Defines how we will evaluate the building; - what external weather
conditions is the building experiencing, - what properties of the
building will we be changing, and - what are some of the performance
metrics of the building that we want to explore.

The weather conditions are specified in the EnergyPlus Weather File
(EWP) file. The properties we will change in the building will be
defined in the parameter space. In the objectives we will specify the
what output performance metrics we wish to extract such that we can
explore them later.

building.idfobjects

for materials in building.idfobjects["MATERIAL:NOMASS"]:
print("{} {}".format(materials.Name,materials.Thermal_Resistance))

for materials in building.idfobjects["BUILDINGSURFACE:DETAILED"]:
if materials.Sun_Exposure!="NoSun": print(materials.Construction_Name)

for materials in building.idfobjects['CONSTRUCTION']:
if materials.Name=="BTAP-Ext-Wall-Mass:U-0.315": print(materials)

[image: Image]

Figure 2: Setting up the evaluator

Here we change all the external insulation of the building
insu1 = FieldSelector(class_name='MATERIAL:NOMASS', object_name='Typical Insulation 2', field_name='Thermal Resistance')

Setup the parameters, Solar Heat Gain Coefficient
parameters = [Parameter(FieldSelector('Window',"*",'Solar Heat Gain Coefficient'),
 value_descriptor=RangeParameter(0.01,0.99),
 name='Solar Gain Coefficient'),
 Parameter(insu1,
 value_descriptor=RangeParameter(1,15),
 name='Insulation Resistance'),]

Add window-to-wall ratio as a parameter between 0.1 and 0.9 using a custom function
parameters.append(wwr(RangeParameter(0.1, 0.9)))

Construct the objective
objective = ['Electricity:Facility']

Build the problem
problem = EPProblem(parameters, objective)

setup the evaluator
evaluator = EvaluatorEP(problem, building, epw_file = "/examples/EnsembleWorkflows/victoria.epw", multi=True,
 progress_bar=True, distributed=True, out_dir="outputdirectory")

(3) Generate the Dataset

	Sample the problem space

	Setup the parallel processing

	Generate the Samples

	Store and recover the expensive runs

Use latin hypercube sampling to take 30 samples
inputs = sampling.dist_sampler(sampling.lhs, problem,100)

sample of the inputs
print(inputs.head())

 Solar Gain Coefficient Insulation Resistance Window to Wall Ratio
0 0.980214 9.160124 0.650856
1 0.661204 13.430512 0.597784
2 0.716411 4.617035 0.337802
3 0.518645 7.229073 0.677144
4 0.206976 10.194319 0.808266

Setup the parallel processing in the notebook.
client = Client(threads_per_worker=1)
client

	
Client

 	Scheduler: tcp://127.0.0.1:37141

 	Dashboard: /user/username/proxy/8787/status

 C4 diagram of the BESOS platform

C4 diagram of the BESOS platform

This image provides a high level overview of the BESOS platform and how the besos library is used in the platform.

[image: Image Figure 1: C4 Diagram of BESOS]

 Formatting Jupyter Notebooks

Formatting Jupyter Notebooks

This guide outlines some recommendations for layout and formatting of notebooks that are submitted as Examples on BESOS.

File Naming

Use CamelCaseLikeThis as your file name, so it can be linked to easily.

Table of Contents

Use the Table of Contents extension: toc2 extension [https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/toc2/README.html]

Abstract

As for a paper, the abstract should give a summary of the notebook, including the objectives of the analysis, input data needed and what results it generates.

Introduction

One to two paragraphs explaining the relevant background of the analysis and the problem is is trying to solve. It should also include references to any relevant existing notebooks, academic literature and data sources.

Imports

Put all required modules in an import cell, rather than scattered through the notebook.
Start with generic things like pandas, then specific external modules like platypus, then the local besos modules.
Non-standard modules should include a comment explaining what the module is for and including a link to the repository or documentation.

For each analysis section:

	Begin each section with a markdown cell with a section title and description

	The code cell should include comments describing any non-trivial lines

	The code will return a results cell, likely a plot or numerical result

	Optional: Include a comments cell following the plots to describe what the results are showing.

 FAQ Platform

FAQ Platform

If you have more questions please post them on the gitlab issues [https://gitlab.com/energyincities/besos/-/issues] board.

BESOS platform (the Jupyter interface)

	How much computing power is provided?

Right now, lots! We have 16 cores, 160Gb RAM and 3Tb of storage space on the cloud (thanks, Compute Canada [https://www.computecanada.ca/]!).

Initially we are not imposing quotas, just asking everyone to respect the needs of other users.

If you start hogging the system, we will come and glare at you menacingly.

	How do I download notebooks from BESOS?

Right-click on the notebook file in the file manager window on the left and select “download”.

	How do I download my notebook as a .py file?

Select File, Export Notebook As… and select “Executable Script”

	How do I upload files to BESOS?

Click the up arrow above the file manager window (make sure you’re in the right directory first).

	How do I share files between users?

You can set up the Google Drive extension [https://github.com/jupyterlab/jupyterlab-google-drive/blob/master/docs/setup.md] for a folder that you both have access to.

	How do I use the standard Jupyter Notebook rather than this fancy Jupyter Lab interface?

There are two ways to do this:
* Through the GUI, select the “commands” (control+shift+C) icon on the side bar, and scroll down under the help heading and select the “Launch as Classic Notebook” command.
* Go to the URL bar of the browser and replace everything after “your_username/” with “notebook” and press enter.

	I keep getting an: typeError: unsupported operand type(s) for +=: ‘float’ and ‘str’, what is causing it and how do I fix it?

This error is usually caused by the presence of spaces or letters in the same excel cells as number values. Or perhaps spaces in the cells that are left blank. Ensure that there are no spaces and this should fix the problem.

 Overview of Energy Hub modelling on BESOS

Overview of Energy Hub modelling on BESOS

The Energy Hub model implemented in Python in the PyEHub
repository [https://gitlab.com/energyincities/python-ehub] optimizes
operational energy balancing and desig selection and sizing of an energy
system given technical, economical and environmental constraints
[1 [https://www.sciencedirect.com/science/article/pii/S0142061512000701]].
The module is provided as part of BESOS, where a Jupyter Notebook can be
used to set up a basic model, customise it, run it and plot the results.
A series of examples are given below.

Basic workflow

The figure below shows the original EHub workflow to run a model defined
in an Excel file which describes the system layout, convertors, storage
system(s), energy streams and timeseries. Several tutorials and
examples [https://gitlab.com/energyincities/python-ehub/tree/master/pyehub/tutorials]
are available through GitLab on how to setup up this input file. This
gets parsed into model data, which is used to set up the problem
constraints, which are passed to a solver like CPlex or GLPK to find the
least cost solution. This solution is printed to the terminal and to an
output Excel file.

Simple PyEHub workflow.

	Run EHub is a simple example that walks through
the use of EHub using the original workflow.

	Exploring Command Line Features of
EHub [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/ExploringCommandLine.ipynb] explains the command line
features of the EHub model.

Using PyEHub features via Jupyter Notebooks

The figure below shows the workflow on BESOS. We make use of Jupyter
Notebooks to make changes to the model definition file, extend the base
PyEHub code, run model variations, read the outputs into a pandas
DataFrame and plot them.

Jupyter Notebook based workflow for Energy Hub modelling on BESOS.

The following notebooks give examples of interacting with Energy Hub
model from a notebook. The core model is customised in various ways,
then applied to an Excel-based model file.

	Adding custom constraints [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/CustomConstraints.ipynb] shows how to
add three different types of custom constraints.

	Modify existing constraint [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/ModifyExistingConstraint.ipynb] edits
an existing constraint of the base model to add a subsidy for certain
renewable technologies.

	Remove existing constraint [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/RemoveConstraint.ipynb] turns off an
existing constraint.

	Rooftop Constraint adds a constraint which
limits roof size on which solar technologies can be installed.

	Time Varying Grid Price [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/TimeVaryingGridPrice.ipynb] adds a time
series which represents grid price.

	Time Resolved Carbon Factors [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/TimeResolvedCarbonFactors.ipynb]
combines Energy Hub modelling in BESOS with analysis of the wider
power system using SILVER.

	Storage plots [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/StoragePlots.ipynb] gives graphical results
showing how a storage device is operated.

	Overriding Input Data [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/OverridingInputData.ipynb] gets load data
for some typical days from a separate file, overwrites the time
series and solves the model for each time series. Outputs are stored
in a single DataFrame and key items are printed.

	Workshop - Remote Communities
outlines the process of modelling energy systems for remote
communities. This includes reading data, optimizing parameters, and
visualizing the results

Multiple Hubs

The Energy Hub model can provide useful results for just one hub, but
the real power of the model is when multiple hubs are linked together. -
Multiple Hubs [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/Networks/MultipleHubs.ipynb] gives an overview of how
hubs are linked together. - Linear
Powerflow [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/Networks/LinearPowerflow.ipynb] adds linear powerflow
constraints to the Energy Hub model.

Editing the Excel files in Notebooks

The Excel file(s) that define a model can also be edited from a
notebook. - Edit Excel [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/EditExcel.ipynb] is a notebook to edit the
input excel file. - Edit Networks Excel [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/EditNetworksExcel.ipynb] is
a notebook to edit the networks excel file.

EHEvaluator and Parameter Editor

Several functions are provided for integration with the rest of BESOS.

The EHEvaluator allows an Energy Hub model to be called via the
BESOS Evaluator class. This is useful for integration with the
EnergyPlus and Surrogate Modelling Evaluators. -
EHEvaluator demonstrates the EHEvaulator. - EP
to EH Evaluators shows how to combine an
Energy Hub and and EnergyPlus Evaluator.

The pyehub_parameter_editor function is used by the EHEvaluator
for defining Parameters. - PyEHub Parameter
Editor [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/ParameterEditor.ipynb] shows how to define BESOS Parameters
for PyEHub models.

 Examples Overview

Examples Overview

This notebook gives an overview of the different example files and what
they are used for. They are organised following the folder structure of
the Examples directory. Click on the notebook titles to open them.

Surrogate Modelling

Interactive Surrogate

An overview of lots of BESOS functionality. We define an EnergyPlus
model with two parameters, generate samples that span the design space,
use these to train a surrogate model, then explore the design space
using an interactive plot that queries the surrogate model.

Overview of Surrogate modelling on BESOS

This notebook gives an overview of surrogate modelling on BESOS, with
links to many other example notesbooks that demonstrate specific
functionality: - Fitting a Gaussian Process
model - Fitting a feed-forward
Neural Network
- Fitting a Neural-Network using
TensorFlow - Using an adaptive
fitting algorithm

Optimization

Building Optimization

This notebook gives an overview of building design optimization. It uses
EnergyPlus via an Evaluator and defines the optimization problem
using Parameters and Descriptors.

Optimization Run Flexibility

It is possible to change the configuration of the algorithm part way
through the optimisation process, or even to switch algorithms
completely. Doing so requires using Platypus algorithms directly,
instead of the algorithm wrappers provided through the optimization
module.

Objectives and Constraints

There are two ways to use the outputs of an Evaluator: Objectives and
Constraints. These are both made using the MeterReader and
VariableReader classes.

Energy Hub

Overview of Energy Hub modelling on BESOS

This notebook gives an overview of the Energy Hub model, with links to
the following example notesbooks that demonstrate specific
functionality: - Run EHub is a simple
example that walks through the use of EHub using the original workflow.
- Exploring Command Line Features of
EHub [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/ExploringCommandLine.ipynb] explains the command line
features of the EHub model. - Adding custom
constraints [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/CustomConstraints.ipynb] shows how to add
three different types of custom constraints. - Modify existing
constraint [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/ModifyExistingConstraint.ipynb] edits an
existing constraint of the base model to add a subsidy for certain
renewable technologies. - Remove existing
constraint [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/RemoveConstraint.ipynb] turns off an existing
constraint. - Rooftop Constraint adds
a constraint which limits roof size on which solar technologies can be
installed. - Time Varying Grid
Price [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/TimeVaryingGridPrice.ipynb] adds a time series which
represents grid price. - Time Resolved Carbon
Factors [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/TimeResolvedCarbonFactors.ipynb] combines Energy
Hub modelling in BESOS with analysis of the wider power system using
SILVER. - Storage plots [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/StoragePlots.ipynb] gives
graphical results showing how a storage device is operated. -
Overriding Input Data [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/OverridingInputData.ipynb] gets
load data for some typical days from a separate file, overwrites the
time series and solves the model for each time series. - Multiple
Hubs [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/Networks/MultipleHubs.ipynb] gives an overview of how
hubs are linked together. - Linear
Powerflow [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/Networks/LinearPowerflow.ipynb] adds linear
powerflow constraints to the Energy Hub model. - Edit
Excel [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/EditExcel.ipynb] is a notebook to edit the input
excel file. - Edit Networks
Excel [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/EditNetworksExcel.ipynb] is a notebook to edit the
networks excel file. - EHEvaluator
demonstrates the EHEvaulator. - EP to EH
Evaluators shows how to combine an
Energy Hub and and EnergyPlus Evaluator. - PyEHub Parameter
Editor [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/EnergyHub/ParameterEditor.ipynb] shows how to define BESOS
Parameters for PyEHub models.

Data Analysis

Bayesian Network

A stochastic generator of hourly electricity use in a residential
building fitted to measured data, to generate synthetic profiles for a
Monte Carlo analysis.

Fitting Grey-box Models [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/DataAnalysis/ecobee_public/FittingGreyboxModels.ipynb]

This notebook and associated files implement the methods used in a paper
applying grey-box models to building temperature data to obtain building
characteristics. It also shows how notebooks can be used as the
front-end for scripts written as pure Python .py files.

Parametrics and Sensitivity Analysis

Parametric Analysis

How to define a parametric (brute-force) analysis using an EnergyPlus
model, and get the energy use for all combinations of parameter values.

Morris Screening

Implementation of the Morris screening global sensitivity method.

Sobol Sensitivity Analysis

Implementation of the Sobol global variance-based sensitivity analysis
method.

Evaluators

Evaluators

How to use the three BESOS evaluators: - the EnergyPlus Evaluator
(EvaluatorEP) - the Generic Evaluator (EvaluatorGeneric) - the
Energy Hub Evaluator (EvaluatorEH)

Example of how to use EvaluatorGeneric to wrap multiple evaluators or
functions for multiple objectives problem.

Descriptors

Descriptors specify what kinds of values are valid for a parameter.

Selectors

Selectors identify which part of a model to modify for a given
parameter, and how to modify it.

Generic Selectors [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/Evaluators/Generic%20Selectors.ipynb]

Generic Selectors let you provide a function which modifies the
building, for when you need more customisation than other selectors
provide.

Custom EnergyPlus Evaluator functions [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/Evaluators/CustomEPObjective.ipynb]

Custom functions can be executed on the EnergyPlus results.

Running EnergyPlus directly

Various ways of running EnergyPlus directly and interacting with models
via EPPy.

Automatic Error Handling

Sometimes there are parts of the design space that we want to explore
that will cause the EnergyPlus simulation to fail, such as invalid
combinations of parameter values. In this example, we demonstrate how
this is handled using an undefined material to represent an invalid
state.

Different Version of EnergyPlus

Use different version of EnergyPlus to run simulation.

Cluster computing

Cluster Submission

Job submission to the Compute Canada cloud or similar can be integrated
into the notebook workflow, as seen here. Also provided are tutorials on
Linux terminal commands
and SFTP file transfer.

Other

Geomeppy [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/Geomeppy/Geomeppy.ipynb]

Some basic examples of geomeppy library.

 Surrogate Modelling on BESOS

Surrogate Modelling on BESOS

Surrogate modelling or metamodelling is a way to emulate physics-based
building simulation models
[1 [https://www.sciencedirect.com/science/article/pii/S0378778819302877]].
BESOS integrates building simulation and surrogate modelling using: +
EnergyPlus model editing and execution via EPPy using
Evaluators + sampling
toolboxes [https://pythonhosted.org/pyDOE/] + machine learning
toolboxes like ScikitLearn [https://scikit-learn.org/stable/] and
TensorFlow [https://www.tensorflow.org/] + the besos module to
simplify the interconnection of the above items.

Surrogate Modelling workflow

The figure below shows a BESOS workflow that covers all the elements
needed to derive surrogate models. This is supported by access to
powerful hardware for conducting sampling and model training quickly in
parallel.

BESOS workflow for Surrogate Modelling
[`1 <https://www.sciencedirect.com/science/article/pii/S0378778819302877.>`__].

The derivation of surrogate models demonstrated in the following
notebooks:

	Interactive Surrogate is a quick
tour of a lots of BESOS: make an EnergyPlus model with two
parameters, generate samples that span the design space, use these to
train a surrogate model, then explore the design space using an
interactive plot that queries the surrogate model.

	Fit GP Model makes a Gaussian Process
surrogate model using latin hypercube sampling and the ScikitLearn
syntax.

	Fit feedforward Neural
Network makes a Neural Network
surrogate model using latin hypercube sampling and the ScikitLearn
syntax.

	Fit NN Tensorflow makes a Tensorflow graph and
trains it on building simulation data.

	Fit GP Adaptive adaptiveley selects
simulations instead of picking them all in one advance. This aims to
reduce the number of samples required to derive a surrogate model.

Others

	Parameter sets [https://gitlab.com/energyincities/besos-examples/-/tree/master/besos/examples/ParallelizedWorkflowsWithDask/parameter_sets.py] is a .py file which defines
some sets of besos.parameters to avoid redifining design parameters
in each of the notebooks above.

 Bayesian Network

Bayesian Network

Objective

In this Jupyter notebook, we build a stochastic generator of hourly
electricity use in a residential building from measured data. This model
can be used to generate many synthetic profiles of a given length as
required by a Monte Carlo analysis. In this way a sensitivity analysis
or robust optimization of Energy Hub outputs can be performed.

The data used comes from The Hourly Usage of Energy Dataset for
Buildings in British Columbia [https://summit.sfu.ca/item/18163],
which is available for free for non-commercial educational purposes.

This notebook is organized as follows: -
Introduction gives an overview of the approach and
model formulation. - Data loading and
pre-processing performs the
required initial actions on the measured data to obtain a proper data
set for the model fitting. - Conditional probability function
fitting computes
\(P(U_t=u|M_t, H_t, W_t)\) from the measured data. - Yearly profile
generation shows how using the model to
generate profiles. - Performance check proposes
different tools to assess the similarities between synthetic and
measured profiles. * * *

import os
import pickle as pk

import chaospy as cp # Uncertainty quantification using polynomial chaos expansions and Monte Carlo methods, and tools and classes to play with distributions
import numpy as np
import pandas as pd
from matplotlib import dates as mdates, pylab as pl, pyplot as plt
from scipy import fftpack as fft # Fourier transform

Introduction

Buildings, renewable energy generation, storage technologies and
associated energy systems all pose complex, interacting design and
operational challenges. These are characterized by the underlying
variation in boundary conditions, primarily the fluctuations in climate
that affect solar and wind availability and thermal loads, but also the
occupancy and use patterns of buildings and rooms. This work proposes a
simple way to apply mathematical stochastic modelling techniques to
these problems.

The idea is to build a stochastic profile generator from measured data
to obtain synthetic hourly electricity demand of a residential building
over a year. This generator will be used as input of Energy Hub
models and will be the first piece of
a stochastic formulation of the Energy Hub problem.

This notebook is a first attempt to build such a generator by means of a
simple Bayesian
network [https://en.wikipedia.org/wiki/Bayesian_network]. The
proposed Bayesian network to predict the electricity use for the hour t
is the following: - U: electricity use (kW) - M: month in the year
[1:12] - H: hour of the day [0:23] - W: weekday/weekend (0 or 1)

In other words, we assume that the electricity use of hour t is only
dependant on the month of the year, the hour of the day and wether the
day is a weekday or a weekend. The electricity use is a stochastic
variable and so we can define its probability as:

\[P(U_t=u)=P(U_t=u|M_t, H_t, W_t)\]

Data loading and pre-processing

Loading

The data set of the building is saved as csv file whose name contains
its id in HUE study. It is an appartment in Metro Vancouver area,
equipped with an electric in-floor radiant heating. The DataFrame is
formatted to have the date as the index and one column which contains
the total electricity demand for the past hour in kWh. There are also
some missing values (0.4% of all the values) which are removed from the
data set. The time step is therefore one hour.

pathData = "" # relative path to data
dataid = 22 # Building id

Load data for the building
df = pd.read_csv(os.path.join(pathData, "Residential_" + str(dataid) + ".csv"))

Format the index of the dataframe so it is the date
df.index = pd.to_datetime(df["date"])
df.index = df.index + pd.to_timedelta(df.hour, unit="h")
building = df.drop(columns=["date", "hour"])

Rename the column
building = building.rename(columns={"energy_kWh": "use"})

Remove the missing values (Nans)
building = building.dropna()

Show the first lines of the DataFrame
building.head()

 Building Optimization

Building Optimization

This notebook performs building design optimization using EnergyPlus and
BESOS helper functions. We load a model from in.idf, define parameters
to vary, set objectives, test the model, then run a multi-objective
genetic algorithm and plot the optimized designs.

Import libraries

import pandas as pd
from besos import eppy_funcs as ef, sampling
from besos.evaluator import EvaluatorEP
from besos.optimizer import NSGAII, df_solution_to_solutions
from besos.parameters import RangeParameter, expand_plist, wwr
from besos.problem import EPProblem
from matplotlib import pyplot as plt
from platypus import Archive, Hypervolume, Solution

Load the base EnergyPlus .idf file

building = ef.get_building("in.idf")

Define design parameters and ranges

Define a parameter list using a helper function, in this case building
orientation and window-to-wall ratio.

parameters = []
parameters = expand_plist(
 {"Building 1": {"North Axis": (0, 359)}} # Name from IDF Building object
)

parameters.append(
 wwr(RangeParameter(0.1, 0.9))
) # Add window-to-wall ratio as a parameter between 0.1 and 0.9 using a custom function

Objectives

Using Heating and Cooling energy outputs as simulation objectives, make
a problem instance from these parameters and objectives.

objectives = ["DistrictCooling:Facility", "DistrictHeating:Facility"]
besos_problem = EPProblem(parameters, objectives)

Set up EnergyPlus evaluator object to run simulations for this building and problem

evaluator = EvaluatorEP(
 besos_problem, building, out_dir="outputdir", err_dir="outputdir"
) # outputdir must exist; E+ files will be written there
runs = pd.DataFrame.from_dict(
 {"0": [180, 0.5]}, orient="index"
) # Make a dataframe of runs with one entry for South and 50% glazing
outputs = evaluator.df_apply(runs) # Run this as a test
outputs

HBox(children=(FloatProgress(value=0.0, description='Executing', max=1.0, style=ProgressStyle(description_widt…

 Building Optimization with Dask

Building Optimization with Dask

This notebook uses Dask to parrallize the NSGAII alogrithm. Most of this
notebook is copied from the “BuildingOptimization” notebook. But, this
notebook will skip over concepts unrelated to Dask. Go to
examples/Optimization/BuildingOptimization.ipynb for more details about
the notebook.

Setup dask

To use Dask setup the scheduler and the workers by runnning the cell
below. The client object is used to get and set various dask settings
such as the number of workers.

If you’re running this notebook locally, you should be able to open the
dashboard using the link provided by client.

import pandas as pd
from besos import eppy_funcs as ef
from besos.evaluator import EvaluatorEP
from besos.optimizer import NSGAII
from besos.parameters import RangeParameter, expand_plist, wwr
from besos.problem import EPProblem
from matplotlib import pyplot as plt

from dask.distributed import Client
client = Client()
client

	
Client

 	Scheduler: tcp://127.0.0.1:42772

 	Dashboard: /user/peterrwilson99/proxy/8787/status

	
Cluster

 	Workers: 4

 	Cores: 16

 	Memory: 68.72 GB

Building Optimization setup

building = ef.get_building("in.idf") # Load the E+ model in.idf

parameters = []
parameters = expand_plist(# Use helper function to make parameter list
 {
 "Building 1": {"North Axis": (0, 359)} # Name from IDF Building object
 } # Change orientation from North
)

parameters.append(
 wwr(RangeParameter(0.1, 0.9))
) # Add window-to-wall ratio as a parameter between 0.1 and 0.9 using a custom function

objectives = [
 "DistrictCooling:Facility",
 "DistrictHeating:Facility",
] # Use Heating and Cooling (Ideal air loads) as objectives
problem = EPProblem(
 parameters, objectives
) # Make a problem instance from the parameters and objectives

Set up EnergyPlus evaluator

The Energy Plus evaluator must have more then one process to enable
multiprocessing. This disables the caching functionality of the
evaluator which is incompatible with multiprocessing.

In this cell, a evaluator is created and one simulation is run as a test

evaluatorEP = EvaluatorEP(
 problem, building
) # outputdir must exist; E+ files will be written there
runs = pd.DataFrame.from_dict(
 {"0": [180, 0.5]}, orient="index"
) # Make a dataframe of runs with one entry for South and 50% glazing
outputs = evaluatorEP.df_apply(runs) # Run this as a test
outputs

HBox(children=(FloatProgress(value=0.0, description='Executing', max=1.0, style=ProgressStyle(description_widt…

 Cluster submission from notebook

Cluster submission from notebook

This notebook shows how to take code from BESOS and run it on
ComputeCanada cluster resources.

To run BESOS modules on ComputeCanada cluster resources, you will
need: + A ComputeCanada account with the following installed: +
python 3 and glpk (both can be loaded with module load). +
bonmin and energyplus. + besos (pip installable).

You can also obviously develop Python files that use the BESOS modules
locally and submit them to the cluster via your usual method.

Overall process

The general process is as follows: + Write your code to a .py file +
As shown below, you can write out a single cell from your notebook by
adding %%writefile filename.py at the top

This has the advantage that you can test your code on BESOS, then
uncomment this line. + To output a whole notebook, select File, Export
Notebook As… and select Executable Script + Write a batch file to
submit it + We use the %%writefile method below + Execute the
follwing steps in the terminal (here we use a window inside a notebook
cell, or open a seperate terminal tab): + Move the files over using
SFTP (see here). + Submit the job + Copy back the
results files using SFTP + Unpickle the results and continue
post-processing

Whilst this process is somewhat cumbersome, it can be convienient for
novice terminal users to use the cell below as a crib sheet of
commands.

We recommend copying snippets of this notebook and the
SFTP one together to make your own workflow.

Python file for execution on cluster

The following cell will write a Python file cluster.py to be
submitted to the ComputeCanada cluster.

#%%writefile cluster.py
import pickle
import time

import numpy as np
import pandas as pd
from IPython.display import IFrame
from besos import eppy_funcs as ef, pyehub_funcs as pf, sampling
from besos.evaluator import EvaluatorEH, EvaluatorEP
from besos.parameters import (
 FieldSelector,
 FilterSelector,
 GenericSelector,
 Parameter,
 RangeParameter,
 expand_plist,
 wwr,
)
from besos.problem import EHProblem, EPProblem, Problem

now = time.time() # get the starting timestamp

building = ef.get_building() # load example file if no idf filename is provided
parameters = expand_plist(
 {'NonRes Fixed Assembly Window':
 {'Solar Heat Gain Coefficient':(0.01,0.99)}}
)
objectives = ['Electricity:Facility', 'Gas:Facility'] # these get made into `MeterReader` or `VariableReader`
problem = EPProblem(parameters, objectives) # problem = parameters + objectives
evaluator = EvaluatorEP(problem, building) # evaluator = problem + building
samples = sampling.dist_sampler(sampling.lhs, problem, 2)
outputs = evaluator.df_apply(samples, keep_input=True)

passedtime = round(time.time()-now,2)
timestr = 'Time to evaluate '+str(len(samples))+' samples: '+str(passedtime)+' seconds.'

with open('time.cluster', 'wb') as timecluster:
 pickle.dump(timestr, timecluster)
with open('op.out', 'wb') as op:
 pickle.dump(outputs, op)

timestr

HBox(children=(FloatProgress(value=0.0, description='Executing', max=2.0, style=ProgressStyle(description_widt…

'Time to evaluate 2 samples: 3.76 seconds.'

Batch file

The following cell will write a batch file clusterbatch.sh used for
submitting our job.

%%writefile clusterbatch.sh
#!/bin/bash
#SBATCH --account=def-revins
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --cpus-per-task=4
#SBATCH --mem=1000mb
#SBATCH --output=%x-%j.out

echo "Current work dir: `pwd`"
echo "Starting run at: `date`"

echo "Job ID: $SLURM_JOB_ID"

echo "prog started at: `date`"
mpiexec python cluster.py
echo "prog ended at: `date`"

Overwriting clusterbatch.sh

File transfers

Now we need to transfer following files to the cluster using SFTP as
described in this notebook: + cluster.py +
clusterbatch.sh

Note that we need to transfer these files in a folder residing in
/scratch (e.g. /scratch/job) on the cluster since we do not
have access to submit jobs from /home.

Job submission

SSH login on the server

Get the terminal inside the notebook:

your_gitlab_username = 'mdrpanwar'# change this to your username
IFrame("https://hub.besos.uvic.ca/user/"+your_gitlab_username+"/terminals/2", width=1200, height=250)

 EvaluatorEH

EvaluatorEH

This notebook covers how to use the PyEHub Evaluator (EvaluatorEH).

import numpy as np
import pandas as pd
from besos import pyehub_funcs as pf
from besos.evaluator import EvaluatorEH
from besos.parameters import Parameter, PathSelector
from besos.problem import EHProblem

This evaluator needs an energy hub model, and a problem with parameters
that can modify it, and objectives that correspond to outputs from the
solution of the model. Parameters are provided as a list of key list
mapping lists for the different variables inside the model. Outputs are
provided as a list of the keys from the solution of the model.

hub = pf.get_hub()

parameters = [
 Parameter(PathSelector(["LOADS", "Elec"])),
 Parameter(PathSelector(["LOADS", "Heat"])),
]
objectives = ["total_cost", "total_carbon"]
problem = EHProblem(parameters, objectives)
evaluatorEH = EvaluatorEH(problem, hub)

Input values for overwritting the specified parameters can be given in
the form of single values, a dictionary time series, a dataframe of
single values, or a dataframe of time series.

default_timeseries = [
 {
 0: 1.0,
 1: 4.0,
 2: 4.0,
 3: 4.0,
 4: 4.0,
 5: 4.0,
 6: 4.0,
 7: 4.0,
 8: 4.0,
 9: 4.0,
 10: 4.0,
 },
 {
 0: 20.0,
 1: 20.0,
 2: 20.0,
 3: 20.0,
 4: 20.0,
 5: 20.0,
 6: 20.0,
 7: 12.0,
 8: 12.0,
 9: 12.0,
 10: 12.0,
 },
]
modified_heat = [
 {
 0: 1.0,
 1: 4.0,
 2: 4.0,
 3: 4.0,
 4: 4.0,
 5: 4.0,
 6: 4.0,
 7: 4.0,
 8: 4.0,
 9: 4.0,
 10: 4.0,
 },
 {
 0: 18.0,
 1: 18.0,
 2: 18.0,
 3: 18.0,
 4: 18.0,
 5: 18.0,
 6: 18.0,
 7: 16.0,
 8: 16.0,
 9: 16.0,
 10: 16.0,
 },
]
modified_elec = [
 {
 0: 4.0,
 1: 8.0,
 2: 6.0,
 3: 5.0,
 4: 7.0,
 5: 7.0,
 6: 7.0,
 7: 7.0,
 8: 7.0,
 9: 7.0,
 10: 7.0,
 },
 {
 0: 20.0,
 1: 20.0,
 2: 20.0,
 3: 20.0,
 4: 20.0,
 5: 20.0,
 6: 20.0,
 7: 12.0,
 8: 12.0,
 9: 12.0,
 10: 12.0,
 },
]
modified_both = [
 {
 0: 4.0,
 1: 8.0,
 2: 6.0,
 3: 5.0,
 4: 7.0,
 5: 7.0,
 6: 7.0,
 7: 7.0,
 8: 7.0,
 9: 7.0,
 10: 7.0,
 },
 {
 0: 18.0,
 1: 18.0,
 2: 18.0,
 3: 18.0,
 4: 18.0,
 5: 18.0,
 6: 18.0,
 7: 16.0,
 8: 16.0,
 9: 16.0,
 10: 16.0,
 },
]
timeseries_df = pd.DataFrame(
 np.array([default_timeseries, modified_heat, modified_elec, modified_both]),
 columns=["p1", "p2"],
)

Normally the evaluator can be called directly with the input values but
if using a dataframe as input df_apply must be used.

result = evaluatorEH.df_apply(timeseries_df)
result

HBox(children=(FloatProgress(value=0.0, description='Executing', max=4.0, style=ProgressStyle(description_widt…

 Combining EnergyPlus and EnergyHub Evaluators

Combining EnergyPlus and EnergyHub Evaluators

This notebook covers different ways to use EnergyPlus and PyEHub
Evaluators together.

import numpy as np
import pandas as pd
from besos import eppy_funcs as ef, pyehub_funcs as pf
from besos.evaluator import EvaluatorEH, EvaluatorEP
from besos.objectives import MeterReader
from besos.parameters import (
 FieldSelector,
 Parameter,
 PathSelector,
 RangeParameter,
)
from besos.problem import EHProblem, EPProblem

Custom EnergyPlus Evaluator Functions

First we need to define a way to get a whole time series from EnergyPlus
Evaluator, not just an objective function value. To extract a time
series from an EnergyPlus Evaluator the default summation function must
be replaced. The function timeseriesfunc returns the entire Pandas
Series from the output of the EnergyPlus simulation.

def timeseriesfunc(result):
 return result.data["Value"]

Create an EnergyPlus Evaluator

Here is a standard EnergyPlus Evaluator for editing the lighting power
density for the default building and getting the electricity demand time
series. The output is a Pandas Series, and the units are Joules.

building = ef.get_building()
EPparameters = [
 Parameter(
 FieldSelector("Lights", "*", "Watts per Zone Floor Area"),
 value_descriptor=RangeParameter(8, 12),
 name="Lights Watts/Area",
)
]
EPobjectives = MeterReader("Electricity:Facility", func=timeseriesfunc)
problem = EPProblem(EPparameters, EPobjectives)
evaluator = EvaluatorEP(problem, building)
result = evaluator([8])
result

/home/user/.local/lib/python3.7/site-packages/besos/parameters.py:425: FutureWarning: Use value_descriptors instead of value_descriptor.
 FutureWarning("Use value_descriptors instead of value_descriptor.")

(0 5.041708e+07
 1 5.142561e+07
 2 5.193728e+07
 3 5.111495e+07
 4 4.728000e+07
 5 4.371469e+07
 6 5.956208e+07
 7 5.870644e+07
 8 6.031615e+07
 9 6.127009e+07
 10 6.202866e+07
 11 6.294521e+07
 12 6.369996e+07
 13 6.431286e+07
 14 6.507253e+07
 15 6.522390e+07
 16 6.471212e+07
 17 6.365803e+07
 18 6.167204e+07
 19 6.648230e+07
 20 6.682431e+07
 21 6.601229e+07
 22 4.320751e+07
 23 4.910526e+07
 24 1.431370e+07
 25 1.310912e+07
 26 1.431370e+07
 27 1.310912e+07
 28 1.431370e+07
 29 1.310912e+07
 30 1.551827e+07
 31 8.609274e+06
 32 7.227474e+06
 33 7.227474e+06
 34 7.227474e+06
 35 7.227474e+06
 36 7.227474e+06
 37 7.227474e+06
 38 7.227474e+06
 39 7.227474e+06
 40 9.991074e+06
 41 1.551827e+07
 42 1.407278e+07
 43 1.310912e+07
 44 1.431370e+07
 45 1.310912e+07
 46 1.431370e+07
 47 1.310912e+07
 Name: Value, dtype: float64,)

EnergyPlus Evaluator Output conversions

To ensure the output of the EnergyPlus evaluator is in the correct
format for the Energy Hub, some conversions are required.

First the result is converted from a Pandas Series to a dataframe.

act_result = result[0].to_frame()

Splitting into days

Then because EnergyPlus simulated a summer design day and a winter
design day, the output is split and their indexes reset.

cold_result = act_result.head(24)
cold_result = cold_result.reset_index()
warm_result = act_result.tail(24)
warm_result = warm_result.reset_index()

Unit Conversions

The output for an energy Output:Meter in EnergyPlus is in Joules but
EnergyHub deals with kWh so the entire dataframe for both days is
converted. They are then turned into dictionaries with the keys being
the time series index.

cold_result = cold_result / 3600000
cold_dict = cold_result.to_dict()
cold_dict = cold_dict["Value"]

warm_result = warm_result / 3600000
warm_dict = warm_result.to_dict()
warm_dict = warm_dict["Value"]

Wrapping in Dictionaries

Lastly the dictionaries are wrapped as lists to match the input format
for EnergyHub Evaluators.

cold_input = [cold_dict]
warm_input = [warm_dict]

Create a PyEHub Evaluator

Here is a standard PyEHub Evaluator for editing the electrical load of a
simple energy hub, minimizing the total cost and outputting both the
total cost and total carbon emissions from the optimizied hub. See
EHEvaluator for more details. It is applied to
the Energy Hub model specified in config

EHparameters = [Parameter(PathSelector(["LOADS", "Elec"]))]
EHobjectives = ["total_cost", "total_carbon"]
EHproblem = EHProblem(EHparameters, EHobjectives)
hub = pf.get_hub()
EHevaluator = EvaluatorEH(EHproblem, hub)

Single timeseries for PyEHub Evaluator

The wrapped dictionary inputs can be used directly as input for the
PyEHub Evaluator.

result1 = EHevaluator(cold_input)
result1

(1856.41, 77.5222)

result2 = EHevaluator(warm_input)
result2

(1839.45, 31.8574)

Dataframe of time series

These inputs can be combined into a single dataframe and used as input
for the evaluators.

seasons_df = pd.DataFrame(np.array([warm_input, cold_input]), columns=["p1"])

result3 = EHevaluator.df_apply(seasons_df)
result3

HBox(children=(FloatProgress(value=0.0, description='Executing', max=2.0, style=ProgressStyle(description_widt…

 Fit feedforward Neural Network model

Fit feedforward Neural Network model

import warnings

import chart_studio
from besos import eppy_funcs as ef, sampling
from besos.evaluator import EvaluatorEP, EvaluatorGeneric
from besos.problem import EPProblem
from chart_studio import plotly as py
from plotly import graph_objs as go
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import StandardScaler

from parameter_sets import parameter_set

We begin by: + getting a predefined list of 7 parameters from
parameter_sets.py + making these into a problem with electricty
use as the objective + and making an evaluator using the default
EnergyPlus building.

parameters = parameter_set(7)
problem = EPProblem(parameters, ["Electricity:Facility"])
building = ef.get_building()
evaluator = EvaluatorEP(problem, building)

Then we get 20 samples across this design space and